Log of SV Free Spirit and ships company

The chronicles of the schooner Free Spirit and her crew, embarking on an open ended journey upon the great rolling heap. Free Spirit is currently pursuing humanitarian and commercial goals in the Dominican Republic, on the island of Hispaniola. Working under the Ocean Reach USA and Paradigm Research banners, she is serving as logistics headquarters, workshop, and development laboratory for many ongoing projects. This is the log of her journey.....

Google
 
Web sailfreespirit.blogspot.com
If you are joining us for the first time, click here for an introduction!
Books and more, at the Schooner Free Spirit Chandelry
Clothes and more, at the Free Spirit Logo Shop!

Wednesday, December 26, 2007

The Final Painting

Here she is, with the first and only coat of hard (non ablative) black bottom paint. Although the upper black stripe is the boot stripe, and over the course of finishing the painting, did get 2 more coats.



Painted with the first coat of red.



Working into the wee hours once again, the bottom paint crew (see picture below) diligently applies the 2nd coat of red.



The bottom paint crew :-)

P.S. Before the first coat of bottom paint was applied, the whole bottom had to have not yet dry (tacky) amerlock to adhere to. The white spot above, is one of 2 that were missed during that coat. They were painted when the areas under the stands were done.



The boat yard workers consist of Proctor, who operates the travel lift, and Jon & James who do all the rest of the miscellaneous work around the place. They are the only ones who are allowed to move the stands that hold up the boat.



Me, sanding the spots that had been hidden under the stands for the past year. For those 7 areas plus the 2 missed spots, the process starts all over again.



0 Comments:

Post a Comment

<< Home

Introducing Propcalc 4.0

Use Propcalc to easily match your hull with your engine, transmission, and propeller
Put the known data in the top fields, then hit the Update button to get the answers.
Results, of course, should be verified by a Naval Architect or qualified surveyor.
Data is provided for three bladed propellers of average type
For two or four bladed props, use the modifiers shown below.

Fill out the fields as follows:

Vessel LWL (ft) = Waterline length
Vessel Disp (lbs) = Vessel displacement
(max) HP = Rated Engine Max HP
Engine RPM max = Engine RPM at Max HP
Engine RPM cruise = Desired or estimated cruise rpm
(Cruise or Max) Kts = Speed to work the calculations for
Slip = Propeller efficience. 45% is average for a displacement cruiser.
Gear ratio = 1: Gear ratio of transmission
SL Ratio Adj. = This value will be added (or subtracted, if a negative value) to the calculated S/L ratio.

Key information:

If the "hp required" is greater than the "cruse HP", you have your cruise RPM set too low for your engine parameters.
If the "hp required" is significantly less than the "cruse HP", you have your cruise RPM set too high for your engine parameters.
If the "hp required" is greater than the "Max HP", then your target speed is too high for your engine/hull parameters.
The S/L ratio is calculated automaticaly based on your input. It can be adjusted if necessary, but normally it should be left alone.
If the calculated S/L ratio exceeds S/L MAX, then the results are likely to be non-predictive. Try a lower speed requirement.
SL Ratios of 1.1 - 1.4 are typical of displacement hulls. Semiplaning or planing hulls can go higher.

Typical propeller slip values:

Sailing auxiliary, barges, etc less than 9 Kts............45%
Heavy powerboats, workboats 9 - 15 Kts....................26%
Powerboats, Lightweight Cruisers 15 - 30 Kts..............24%
High speed planing boats 30 - 45 Kts......................20%
V bottom race boats 45 - 90 Kts...........................10%


Note:

it is possible to get irrational answers by irrational input , I.E specifying excessive speed for hull type and length
Any attempt to exceed hull speed (1.34 times the square root of the waterline length in feet) with a displacement hull are likely
to fail unless the hull is extremely fine (multihull) or otherwise exceptional. In such cases, an S/L adjustment would be in order.

2 and 4 bladed props:


For two bladed propellers, multiply the diameter by 1.05, and the pitch by 1.01
For four bladed propellers, multiply the diameter by .94, and the pitch by .98


PROPCALC
  Inputs:
Vessel LWL (ft) =
Vessel Disp (lbs) =
  (max) HP =
  Engine RPM max =
  Engine RPM cruise =
  (Cruise or Max) Kts =
  Slip =
  Gear ratio = 1:
  SL Ratio Adj. =
   
    Solutions:
  Prop rpm max =
  Prop rpm cruise =
  Pitch =
  Diameter =
  Static Thrust =
  Cruise HP =
  Cruise HP% =
  SL Ratio =
  DL Ratio =
  SL Max =
  HP Required =